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CHAPTER ONE
INTRODUCTION

1.1. Overview

Traditional surveillance and communication systems use

a single sensor such as a radar or a sonar for the detection,

identification and tracking of targets. In these systems,

complete sensor observations are available at a central

location and classical hypothesis testing and estimation

procedures are employed for signal processing [1]. There is

an increasing interest in simultaneously employing several

sensors and sensing techniques, such as, sonics, microwave,

infra-red and X-ray sensors. The basic goal of such mul- %%.

tiple sensor systems is to improve system performance, e.g.,

reliability or speed. This can be achieved by properly

combining the information obtained from the various sensors.

Other factors which have necessitated the use of multiple

sensors are the increase in the number of targets under con-

sideration and the increase in required coverage.

The decomposition of processing is essential for

controlling the complexity of computation. Central compu-

tation is just too costly in both memory and time. Moreover,

the distribution of computation may enable us to use parallel

, , .
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processing. This will reduce the computation time which

often grows exponentially. Furthermore, for large-scale .%

complex systems, a distributed implementation is almost

essential. Also, as the external environment changes,
adaptation to change is easier in distributed processing

systems. In a complex information system comprising of a

very large number of sensors and a large volume of infor-
mation, a central processor will require a very large band-

width, and therefore a distributed implementation will be

much more attractive.

Distributed processing of signals is a natural way

to treat the problem of hypothesis testing when there are

many sensors located at different geographical sites. In ,_

general, classical statistical decision theory can not be

used to solve problems that fall into a distributed

decision-making framework. The mathematical tools that we

have, usually assume a centralized configuration and can be
employed to handle the hypothesis testing problems for

systems shown in Figures 1.1 and 1.2. Note that in the
system of Figure 1.2, raw data from the multiple sensors is

transmitted to the data fusion center for centralized pro-

cessing. Organizing a community of decision makers to 7.'

perform a global task is a challenging problem. Even

problems that are trivial in a centralized setting become

very difficult in a distributed environment. To illustrate

the difficulties, consider the binary Bayesian hypothesis

,0

% % %

%
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testing problem for the system shown in Figure 1.1. The

decision rule at the data fusion center is obtained using

the well known result in classical detection theory [1].

The decision rule is a likelihood ratio test (LRT), where

the value of the threshold is determined by the a priori
probabilities and costs. In the distributed configuration..

as shown in Figure 1.3, the objective of the network con- ..

sisting of all the decision makers is to minimize a joint

cost function. Tenney and Sandell [2] have solved the prob-

lem and have shown that each decision maker implements a local '

likelihood ratio test, However, the thresholds are coupled

and are obtained by solving a set of coupled nonlinear equa-

tions. In most cases, the solution of these nonlinear equa-
,. - .% J

tions is a difficult matter.

The goal in this Report , is to consider some

distributed signal detection problems where the signal pro-

cessing is not centralized. The detection network consists

of a multitude of geographically distributed sensors which

collect observations from the environment. The problem is 'Z

to design a distributed detection system that processes the

noisy observations from these geographically distributed

sensors and fuses the partially processed data to perform

a global task. The objective of the work, reported in this .% I

Reoort is to solve problems that will extend the .

5i: ,'* r% %- I%."I~ .
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boundaries of classical detection theory to a distributed

framework. In the next section, we discuss the previous

work on the subject that has been reported in the literature. 0

1.2. Previous Work

Some recent work on the detection problem with multiple

sensors has been reported in the literature. Tenney and

Sandell [2], in their important effort, have extended the

classical binary Bayesian decision theory to the case of two

distributed sensors. This extension does not yield results

which are straightforward extensions of the classical re-

sults. The computation of detector thresholds at individual

detectors is usually coupled. Further work along these

lines has been performed in [2-9]. Sadjadi [3], extended %

the results of [2] to the case of N decentralized sensors

and M hypotheses. Lauer and Sandell [4], considered the

Bayesian detection of signal waveforms in the presence of

noise. Ekchian and Tenney [5] formulated the Bayesian de-

tection problem for various distributed sensor network

i -pologies. Each member of a team of decision agents re-

ceives a conditionally independent observation about some

discrete hypothesis. The decision makers seek to optimize N.'-'I.

a team cost function by making discrete decisions which are
0

then transmitted to other decision makers depending upon

the topology. They derive the optimal decision rules for

%.
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each decision maker which turn out to be LRT's. Ekchian

and Tenney in [6], presented a general recursive methodology

for computing the optimal decision rules for each decision 
Ox

maker for a tandem topology. This is achieved by reformu-

lating the stochastic optimal control problem as an equiva-

lent deterministic one. The problem is then decomposed into •

subproblems which can be recursively solved using dynamic

programming techniques. Kushner and Pacut [8] performed a

simulation study for a distributed detection problem using

exponential distributions. Tsitsiklis and Athans [91 demon-

strated that, in general, distributed hypothesis testing

problems are N-P complete. Their research provided theo- •

retical evidence regarding the inherent complexity of

solving optimal distributed decision problems as compared

to their centralized counterparts.

The decentralized sequential detection problem has

been investigated in [10-12]. In [10], Teneketzis formu- '

lated and solved a decentralized version of the Wald's

problem [13]. In his model, each detector is given the

flexibility of either stopping and making a decision or

continuing to take more observations. He showed that the "
* A.

person to person optimal policies of the detectors are de-

scribed by thresholds which are coupled. More specifically,

the thresholds of detector i at any instant of time depend

on the thresholds of detector j, j=1,2,.. .,N, j # i,at all :.t-

past, present and future times. For a two-detector N-stage

40 0
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detection system, he showed that the thresholds are de-

termined by solving a set of 4N-2 equations in 4N-2 un-

knowns. Hashemipour and Rhodes [11] solved an N-stage, two- _._

detector decentralized sequential hypothesis testing problem.

In their modcl, ea'ch detector takes an observation and makes

a binary decision which is sent to the data fusion center.

The fusion center is given the option of either stopping and

making a decision as to which hypothesis is true or continu-

ing to the next time stage. It is shown that at each time

instant, the optimal local strategies are LRT's. Further-

more, it is shown that the local decisions depend not only

on the present and past observations, but on the past local -

decisions as well. In [12], the decentralized quickest

detection problem has been considered. Tsitsiklis [14],

considered a decentralized detection problem in which a

number of identical sensors transmit a binary function of

their observations to a fusion center which then decides

which one of the two alternative hypothesis is true. He

showed that, when the number of sensors grows to infinity,

optimality is not lost if we constrain the sensors to use

the same decision rule in deciding what to transmit. Re-

cently Hoballah [15] solved various problems in distributed

hypothesis testing. He solved the distributed detection

problem with data fusion using both the Bayesian and Neyman

Pearson approaches. Other related work appeared in [16, 21].

... ........ . ..... ...... ...... .. .. . . .....
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1.3. Report Organization

In this Report , we consider some distributed

detection problems. We will derive the optimal decision

rules for the various distributed sensor network topologies

using a variety of optimality criteria.

In Chapter Two, we present the derivation of the optimal -

decision rule at the data fusion center for the distributed S

detection problem. We use two configurations for the data

fusion center, one centralized and the other distributed.

We assume that the local decisions and the thresholds of all •

the detectors are known a priori.

In Chapter Three, we solve the problem of distributed

Bayesian hypothesis testing with distributed data fusion. .£ -

We derive the decision rules both at the detectors and at

the data fusion centers. An example is presented to illus-

trate the results of this chapter.

In Chapter Four , we solve the problem of distributed

Neyman-Pearson hypothesis testing for various network topolo- .0

gies. First, we formulate and solve the distributed detection

problem for a two-detector tandem topology. Then we extend

the results in two directions. First, we solve the problem

of distributed Neyman-Pearson hypothesis testing with distri-

buted data fusion. Then, we consider the problem of distributed

Neyman-Pearson hypothesis testing for a N-detector tandem 0

topology. An example is presented to illustrate the results

of this chapter.

1let
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In Chapter Five, we present the derivation of the

optimal decision rule for a decentralized sequential detec- .Now

tion problem using the Neyman-Pearson approach. Furthermore, 4'

we solve the Bayesian sequential hypothesis testing problem

for a tandem topology configuration.

In Chapter Six, a summary of results, conclusions,

and suggestions for future research are presented. A

5i
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CHAPTER TWO

OPTIMAL DATA FUSION IN MULTIPLE SENSOR

DETECTION SYSTEMS

2.1 Introduction

Tenney and Sandell [2], have treated the Bayesian •

detection problem with distributed sensors. They only con-

sidered the design of decision rules at the individual "
sensors and did not consider the design of data fusion

algorithms. In this chapter, we investigate the latter

problem, i.e., the design of data fusion algorithms when

the decision rules at the individual sensors are known. We

consider two major options for signal processing in multi-

sensor systems with data fusion. In the first option, all

sensors report to a centralized computing facility as shown

in Figure 2.1. This is the conventional configuration for

a multi-sensor system with data fusion. Some signal pro-

cessing is done at the local sensor, and partial results

are transmitted to the data fusion center for further pro-

cessing. Global results can then be obtained at the data

fusion center. This option is attractive for many appli-

cations due to the communication bandwidth constraints found

in practice. The principal weakness of this configuration

is its vulnerability to the loss of the data fusion center.

The second option is to have a distributed data fusion con-

121* P ~ * ~ ~ ~ .. * . ~ % >' -~ ~ *.--* -*Vm
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figuration as shown in Figure 2.2 (only three sensors are

shown for the sake of clarity). In this option, some signal

processing is done locally at the sensor and partial results

are transmitted to all of the local data fusion centers for 0

further processing. Global results can then be obtained at
U

all of the data fusion centers. This option is attractive

for many applications because it is more robust than the 0

centralized configuration in terms of its vulnerability to

the loss of the data fusion center. Furthermore, each de-

cision maker in the distributed configuration has access to

the actual raw data at that site which may result in a per-

formance enhancement.
S

In this chapter, we consider the problem of optimal

decision combining in multiple sensor detection systems.

In Section 2.2, we derive the optimum fusion rule for the

centralized configuration when the individual detector de- 
0

cision rules are known. The combining rule turns out to be

a function of the probability of false alarm and probability

of miss of individual detectors, i.e., the reliability of

individual detectors. An example is presented to illustrate %

the result. In Section 2.3, we derive the optimum fusion

rules for the distributed configuration when the individual

detector decision rules are known. The combining rule at a

fusion site turns out to be a function of the probability

of false alarm and the probability of miss of the in-

coming decisions from the other decision makers, and its %

14
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own observation. An example is presented to illustrate the

result. Finally the results of this chapter are discussed

in Section 2.4.

2.2. Optimal Centralized Data Fusion

2.2.1. Problem Statement and Solution

Let us consider a binary hypothesis testing problem

with the following two hypotheses:

H signal is absent, and Q

-A signal is present.

The a priori probabilities of the two hypotheses are denoted

by P(Ho) = P0 and P(HI) = Pl. As shown in Figure 2.1, we

assume that there are N detectors, Di, i=l,...,N, and the

observations at each D. are denoted by yi, i=l,...,N. We iqe

will further assume that the observations at the individual

detectors are statistically independent and that the condi-

tional density function of the observations is denoted by o

P(YilHj); i=l,...,N; j=O,1. The independence assumption

implies that

p(yilYj, Hk) = p(yilHk) for i j (2-1)

Each detector, D i, employs a decision rule gi(yi) to make a

decision ui, i=l,2,...,N, where

0 if H is declared
= 1 -2(2-2)

1 if H1 is declared .

•I
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We denote the probabilities of false alarm and miss of each

detector by PFi and PMi respectively. These error probabili-

ties are defined as

%

=AFi Prob. (u. = I H ] andPi1 0

(2-3)

PMi - Prob. [u = OH 1 = I- Di'

After processing the observations locally, the decisions ui

are transmitted to the data fusion center as shown in Figure

2.1. The centralized data fusion center determines the

overall decision u0 for the system, based on the individual

decisions, i.e.,

u0 = yu I, u2,. uN) (2-4),"

Our objective is to find the optimal data fusion rule

when the individual detectors have already been designed.

Data fusion rules are often implemented as "k out of N"

logical functions. This means that if k or more detectors

decide hypothesis HI, then the global decision is HI, other-

wise it is H0 , i.e.,

1 ifUl +u 2 +...+UN >-

uo  (2-5)

10 otherwise ,

where u c {0,1} for i = 1,2,...,N. Common logical functions
1

such as AND, OR, and majority gate are special cases of the

'k out of N" rule. In this section, we will consider a more

general formulation of the data fusion problem. The data

% ... . ,
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fusion problem can be viewed as a two-hypothesis detection S

problem with individual detector decisions being the observa-

tions. The optimum decision rule is obtained by minimizing

the overall risk function R defined as follows:

R = Ef{J(u , H)} (2-6)

where A global decision,

H hypothesis ,.rJ v.

Our aim is to minimize R with respect to all the uncertain-

ties present (ul,...,uN and H) over all possible strategies

y, i.e.,

min EuH J[y(u), H ] (2-7),. V I,;-

y ION.

where

U (u ,u 2 ,-q '-#,uN )  P

u= y(u) u0 E {Ol} -

an d IW -

J(u° = i, H.) _ cost of deciding u° = i when H. S

is present.

Consequently, the problem faced by the data fusion center

is centralized in nature and can be solved using the classi- 0

cal approach. The result is presented in Theorem 2.1.

Theorem 2.1 •

Given N detectors Di, i=l,2,...,N, along with their
,- ,

associated decision rules operating at the point (P PFi
Dil Fi)~

Iwo
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of the Receiver Operating Characteristic (ROC); the optimal

centralized data fusion rule is given by

P1  i P Mi A%.

o S + Fi *- *- w .
in~? P n P

0 0u 0=1 1 "- "PMi > 10 00
+ in 1 - P < in 10-00 (2-8)
S 0i uoO l 0 1o

where N

S+ - the set of all i such that u i = 1,

S A the set of all i such that u i = 0

Proof:

The optimum data fusion rule is given by the following 0

likelihood ratio test [1]
h~~u) ( P1uH) u°= 1 P  - '(>"

_ = <uo(J10 J) (2-9)P (U[Ho) Uo=0 l(0 ' Jl

where

J =ij J(uo = i1H = H.).

Since u. depends only on Yi,

N
p(uIH 1 ) = p(uiil) = I p(ui=lIHI) H p(ui=0H 1)

1=1 S S-

= T (1 - Pi T P MiO (2-10)
S+ S_

In a similar manner,

* . ,<'.'
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N
p(u H_ )= P(ujiHo) = I p(ui1=IHo) R P(Ui=0J 0 ) *..

S+ S-

= r PFi I (1 - P~i )  (2-11)
S+ S S- Fi)

Substituting (2-10) and (2-11) into (2-9) and taking the

logarithm, we get

u 01
p(uH 1 ) 1- Mi > P 0 (J1 0 -J 00)-
p=uH ) In + in 1-P <0 Pl(J 01 -Jl0 S+ PFi S_ i u°0(2-1)0" 11

(2-12)

A manipulation of (2-12) yields the desired result which

completes the proof. Q.E.D.

Note that, we may also express the data fusion rule as

10 001 if a 0 + ai(2ui-1) > in -J1
r ~01 11

1ifa i=l o I

uo = y(u l ,u 2 ,... ,uN) 1 otherwise

(2-13)
where

PS
a = In- 1

-=0 . -..- -..

1 P~

a =in - Mi if u. =1 (2-14)
a Fi 

S

and .1 - P i . :

a. In if u. 0 P .. P
p1

The optimum data fusion rule can be implemented as shown in •

Figure 2.3. As we can observe, individual detector decisions r'.,

are weighted according to their reliability, i.e., the weights

-)0
2 0 5" %"2""
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are functions of probability of false alarm and probability

of miss. The data fusion center structure obtained here

attempts to optimally use the individual detector decisions

by forming a weighted sum and then comparing it to a thresh-

old. -4

2.2.2. Example

We consider a simple binary hypothesis problem with two

detectors DI and D2. The probabilities of false alarm are

giventobe P P and the probabilities of miss are
F1 PF22'

given to be PM l M2 T " We assume the hypotheses to be

equally likely, i.e., P0  P and choose the minimum

probability of error cost function, i.e., J = =,

J01 0. Now, the optimum data fusion rule is obtained -.

using Theorem 2.1. We consider the case when u1 = u2  1.

The log-likelihood ratio is given by '

p(H1 u) 3
In PoU )

= 2 In (2-15)a;

p(H ,Iu)2

Since it is greater than the threshold zero, the decision

is H1. The results for the other combinations of u1 and u2

are summarized below:

U u Global Decision u o  
-''

1 1 H1  0

0 1 H0

1 0 H 0  '. .'

0 0 H0 00

22, .

NSr

L','-''¢,;-'. .
, 
..-.', -.',",".'..,, "22" . *'-, V ", "" "" "" " ', "" "" "' .'..',".'',7"..'..' " ;.'. "..'..','.""..'-" "',. "'.'".''."".

r - * d %," ' .*.-.-%', % '.L' %% ' '.'2 .%_.%. '. %' . '. %- ". .. .- . . .-. ",--." "/ • "t ". " " -" "". - '* "" ""*'
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Note that the fusion rule turns out to be the AND rule.

Depending on the values of P0 PI' PMi' PFi and the costs,

the fusion rule can be some other logical function. The ROC

curve for this example is shown in Figure 2.6. 0

2.3. Optimum Distributed Data Fusion

2.3.1 Problem Statement and Solution

In this section, we consider the same binary hypothesis

testing problem as stated in Section 2.2.1 for the distri-

buted data fusion configuration. In this system, after pro-

cessing the observations locally, i.e., at the level of the

detectors, the decisions u. are transmitted to all the local1 0

data fusion centers for further processing as shown in

Figure 2.4. Now, we describe the sequence of operations at

the ith sensor, i.e., at the detector Di, and the data fusion

center i, DF.. First, D. takes an observation yi and based

on yi makes a decision u.. Then, the decision ui c {0,1}

is transmitted to all the data fusion centers DFk, k1,...,N,

k i. After receiving the decisions uk, k=l,...,N, k i,

from the other detectors, DF. makes a final decision ufi

based on {uk, k=l,. . . ,N, k i} and yi. In the distributed data

fusion problem, our goal is to derive the optimum decision

rules to obtain the final decisions ufi,i=l,...,N. This pro-

blem can again be viewed as a two-hypothesis detection problem

at each site. The individual detector decisions ui's and the

measurement v at each site are the set of observations, i.e.,

the data fusion center DF. receives the set of observations •

.II ' % ,II% % N % % % % t i 1i I i
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u ki and yi} . Based on I., DP. l-
- k) k=1 ... N,-

makes a final decision ufi, i.e.,

ufi = Yi(I.i) (2-16)

We wish to find the optimal data fusion rule at DFi,

i = I,...,N. The risk function Ri, i=l,...,N, at DF i is

defined as

R E[JLufiI H)] (2-17)

Our aim is to minimize Ri with respect to all uncertainties1

present {Ii, H} over all possible strategies Yi' i.e.,

min E J (yi, H)

The optimal data fusion strategy at DF. for the distributed
1 P - J

data fusion configuration is given in the following theorem.

Theorem 2.2

Given N detectors D. along with their associated

decision rules and opcrating points (PDi' Pi)' and N data
F i

fusion centers DFi, i=l,...,N; the optimal distributed

data fusion rule at the site i is given by

P I-P P p(yi IH Ufi=l
in " in " " in M + ln >

S j P i y i Hd u Fj = 01.
J10 J0 0 ( ):".-:.-.M

in Jl -_Jl (2-18)
01 11

2SS N Ml5
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where

S the set of all j such that u. 1, j 1 i.

S1 - the set of all j such that u. = 0, j $ i.

(2-19)

Proof:

The objective is to find the strategy yi so as to

minimize E {J(ufi, H)}, i=l,...,N. This is a classical

detection problem, the solution is given by the following

likelihood ratio test

1
(ui _) p(u 1 yi HI) ufi l P 0 (J 1 0 -J 0 0 ) ( 2
_y p(uiyiIHo) ufi plJ1.ll- (2-20)

1 0 f0

where

u (ul,..., u 1 , ui+l,...u (2-21)

We have

p(ul,yilH) = p(u 1 ,..., ui_1 , ui 1,. . .,uN, Yi H) (2-22)

We assume that uk depends only on Yk' i.e., 0

Uk gk(yk) (2-23)

Then, due to the independence assumption (2-22) becomes S

N
p(ui yilH) = II p(ukJH) • p(yilH) (2-24)

k=l
k$i

Using (2-24) in (2-20), we have

20



N p (u kIH)1 p(y.1Hl) Ufil io- 1 0p0
kn (2-25)
k= PUkHO py~~o ~<0 01 11

Taking the logaritihm of both sides of (2-25), and proceeding

ais in the proof -~f Theorem 2.1, wo have

I4 -P P Ne

in P, + jin p M- U + i j07

S i Fj in Fj
S+ 

.-

+ in >~yI1  fj in (-6
iO UfiO7Y

which completes the proof. Q.E.D.

The data fusion rule at the site i can be implemented as

shown in Fig. 2.5, where

00

P1

a.= ln 1  M ,if u. = 1,
~Fi1

and = n Fi ,if U 0, (-7

1= Mi

for j i.

2.3.2. Example

We consider the same example as in Section 2.2.2,

27
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the given data is summarized below: ,: ' ,

Fl PF2 PMl PM2 Jl0 J01 J00  T11 P0 PI 1

1 0 0 1 1

i I i ii IV ,

We further assume that the conditional densities p(yilHj)

i=l,2,; j=0,1, are exponential, i.e., 0

p(yilHo) = X exp (- Ayi)

p(yilH 1 ) = 2x exp (-2Xy i ) X>O, i=1,2 ::":"

for Yi > 0 ',

and •

p(yiIH) = 0. i=l,2 , j=0,l elsewhere. (2-28) ..

Using Theorem 2.2, we obtain the optimum data fusion rule

for this problem. We first consider the case when u2 =l ,

and in this case we obtain the data fusion rule at the

site 1. We have
1D p

1 - PM Pl ;< >

ln[2 exp(-Xyl) ] + in p 2 + In-
F2 PO

10 00> in - J00 .,(2-29) ¢V.'"

<0 Jo1 11),"

%
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Substituting the numerical values in (2-29), we get

3 1 (2-30)

ln[2 exp(-Xyl)] + in f> 0<
U fl=0

From this, we obtain

1U1fl=0

In 3f] tI ju l ) (2-31)Yl <> x 1(u 2 ( - 1

For the case when u2 =0, we obtain as before
Ufl=0

Ufi
Yl > 0 t(u 2 = 0) (2-32)

£ f1 1 VflV

Similarly for detector 2, we obtain the following likeli-

hood ratio test

0
u f2 0

> n3A t = ) (2-33)- = ( l[.,..

u f2=

and 0

u 0uf2=O'"

> 0 t (u  0) (2-34)

Uf2

Note that in the case of distributed data fusion configu-

ration, we need to have the actual value of the received

data {yi} before we can make a final decision. Further-

more, the final decision depends on the value of the re-

ceived local decisions {u. Basically, Dl waits for the

300
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local decision u2 from D2, then DFI makes a final decision

based on the value of u2 and the raw data yl. The ROC curve

for this example is shown in Figure 2.6. As expected, the

performance of a distributed data fusion configuration is

superior to its counterpart - the centralized data fusion

configuration.

2.4. Discussion

In this chapter, we have considered the design of

optimum data fusion algorithms for the signal detection

problem when multiple sensors are used for surveillance and

a global decision is desired. We have considered two -

approaches to the data fusion problem. In the first approach,

a centralized optimum data fusion structure has been de-

rived which combines the decisions from the individual de-

cision makers while minimizing the overall risk function.

Individual decisions are weighted according to their relia-

bility, i.e., the weights are a function of the probability

of miss and the probability of false alarm of the individual

decision makers. In the second approach, an optimum distri-

buted data fusion structure has been derived which combines

the decisions from other decision makers and the raw obser- -

vation at that site while minimizing the risk function at .'

that site. This approach gives a better performance than

the first approach since we are using the actual observation

Yi instead of its quantized value ui . If we use the hard

31
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decision u. at the fusion site i in the distributed con-

figuration, we will obtain the same performance as in the

centralized configuration. In the distributed configura-

tion, we have a global decision (fused result) at each site -,

which makes the system more survivable for military appli-

cations. This is achieved at the expense of added communi-

cation amongst the sensors. In the next two chapters, we

will study the overall problem of distributed detection

using a distributed data fusion structure.
S
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CHAPTER THREE

DISTRIBUTED BAYESIAN HYPOTHESIS TESTING

WITH DISTRIBUTED DATA FUSION

3.1. Introduction

Some recent work on the Bayesian detection problem

with multiple sensors has been reported in the literature.

Tenney and Sandell [21 extended the classical Bayesian de-

cision theory to the case of distributed sensors without a

data fusion center. Ekchian and Tenney [5] then formu-

lated and solved the Bayesian hypothesis testing prob-

lem for various distributed sensor network topologies.

Hoballah [15] considered the problem of distributed %.1

Bayesian hypothesis testing using a centralized data fusion

center. In this chapter, we solve the problem of distri-

buted Bayesian hypothesis testing with distributed data

fusion. In Section 3.2, we formulate and solve the distri-

buted Bayesian hypothesis testing problem with distributed 0

data fusion for the case of N decision makers. In Section

3.3, we present the results for the case of two decision -.

makers, and illustrate with an example. Finally, in e

Section 3.4, we discuss the results obtained in this

chapter.
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3.2. Distributed Bayesian Hypothesis Testing with P

Distributed Data Fusion

In this section, we consider the system as shown in

Figure 3.1. The Binary hypothesis testing problem is con-

sidered and the two possible hypotheses are denoted by H 0

and Hi, with given a priori probabilities P(H) - Pi

j=0,1. The ith decision maker, DMi, consists of two elements- -K

a detector D. and a data fusion center DFias shown in
11

Figure 3.2. The decision maker i, DMi, takes an observa-

tion yi, i=l,...,N, based on which the detector i, Di, makes

a set of decisions (uil, ui2,..., u uii+l,..., uiN)

where u.. represents the decision made by D. and intended

for DF.. We will denote, by u ,this decision vector genera- ."..

ted at D.. As we will see subsequently, D. employs a
1 1-

different decision rule while determining the different

elements of u. . Each data fusion center j, DF., rece;ves .41_%

a decision vector j' (u l'ujNj I... de-

noted by u. The decision vectors u. and u. are trans-r -itr-•

ported over a communication network which is responsible

for all the processing necessary for transmission to the

appropriate DM's. For illustration, we show an explicit

signalling configuration for a three decision maker network

in Figure 3.3. In the above network each DM receives a de-

cision vector of length two and transmits a decision vec-

tor of length two. In this case, the vector u consists %

of two elements,e.g., u2r 12  3 2 , and the vector

r or W r . .,.f ,F% . inm m mn.munr~~~e. '.V '.. N -V4 -. .

eIJ % %~K
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also consists of two elements, e.g., u 2 t {u21, u2 3}. we

further assume that all U . {0,l}, i=l,...,N, j=l,...,N.

The final decision of DMi at the site i, i=l,...,N,is de-

noted by ufi.

The aim in this chapter is to find the optimal de- %

cision and fusion rules at each site so as to minimize 
the Xt

expected value of the overall cost at each site. The prob-

lem can be formulated as follows. Consider the system con-

figuration shown in Figure 3.1.

(A.1) DM. takes an observation y., i=l,...,N.
1

We assume that {yi, i=l,...,N} are

conditionally independent random variables -

given the hypothesis H, that is,

N
P(Yl, ... YNIH) = 1I p(yiIH) (3-1) S

(A.2) Based on its observation yi, D. makes \\f~. ?
' i k,.,. I 1A.

N-1 local decisions ui., j=l,...,i-l,i+l,...,N, .

i.e., 
.

i= Yij (yi), (3-2) 0

1 %

. -. .4.!

The decision u.. is an intermediate decision -. <<d . .

made at D. whose purpose is to help DM. in

making its final decision ufj-.

39 3



(A.3) Based on yi and Uir, DF. makes a final

decision ufi, i=l,...,N , i.e.,

Ufi = Yfi(Yi, 1ir) (3-3) 0

The decision ufi is the final decision of

DM. at the site i.iS

(A.4) The cost incurred in making the decision

ufj at DM is denoted by J(ufj, H) where H

is the true hypothesis. We assume that

J(ufj , Hk) J(uf = i , Hi), k # i

j=l,...,N ; i=O,l ; k=0,l . (3-4)

All these inequalities are reasonable because

they imply that an error is more costly than

no error.

(A.5) Also, we assume that S

k
rfi -ir ki Y

01u0
k Wi (3-5)

- --fi , U ' 1, y.,

i=1,... ,N ; j I,...,N ; i # j ; k=l,...,N 0

where

r ui ithout its kth element uki*

40

n. U .

O'4O



*~~N ..- r '-' --r .1%- - , -

It is a reasonable assumption since in most practical

cases, one would expect that the probability that DM i  . ', .. '. ?.

will declare H  is higher when DMk sends the decision S

U ki -O as opposed to u ki 1

Under (A.1) through (A.5), the problem is to obtain

the optimum strategies Yfi' Yji' i=l.''N'j=I'''''N, i j,

so as to

Minimize E{J(Yfi(Yipyji. j=l,....,N, j .i), H)}

Yi r for i=l, ...,N

subject to (A.1) - (A.5)

(P1) where

y. (y f ,. ,j j=1, 2, N
1 i'p j' 2 ,N, j # i)

and

r = Set of all possible decision rules (3-6) 't -'

The solution to the problem (P1) is given by the following
L

theorem.

Theorem 3.1

The optimal decision rules associated with DMi,

i=l ... N, are as follows.
',k-. .,

At the detector i, Di, the decision rules yi,

j=l,..., i-l, i+l,...,N are given by the likelihood ratio

tests

41
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uN

A.(y.i) > t (3-7)

whe re

A.(y.) =~y I H1) (3-8)
1 p p(y~i HO)

and

o j. ,U..=0 i-jr ij o
Ui Ur

N

11 p(ukj IH 0) J(uf.1H )
k=l0
kj j (3-9

13 Uij=,l -f =1 1)

Ufj lUfjO

N*

IT pukj HI) ~ufjIHI
'I. *pI

k~ij

At te dta usio ceteri, Di, he ecison uleyf;

where N sgve yte ieioo ai ts .
U-- ..

fi*. NJ

A~~ ~~~ ~ J)>= t( (-0

i < 0 fi ,i

.4i

whe4e

% %
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N LA P
P0 11 p(u.iH°)[J(ufi=l, H0 ) - J(ufi=O, H)]

t (Ur) i  (3-11)fi-ir N
P1 I p(u.ilHl)[J(ufi=O, Hl) - J(ufi=l, Hl)]

j#i 0
Proof:

First, we obtain the decision strategy at the data

fusion center of DMi . The objective is to obtain the opti-

mum decision rules Yfi so as to minimize E{J(yfi, H)} over

the set of all the decisions rules. The average cost or

risk function at the site i is given by

Rfi = E{J(ufi, H)} (3-12)

Expanding (3-12). <-..

Rfi H u U. p(H) p(ufiUir'y H) J(ufi H) dy (3-13)
Ufi -ir y

where

Then, using (A.1) (A.5) and noting that ufi does not de-

pend on yj, j=l,...,N, j # i, we have
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*v~v - ~ * d -' '' ~? ~ * ~ - - -IS.NSS

- '* --- A %



Ir -
= p (H)p(u 

Yi' H)

H,u U. 
. Ifi, -ir Y* .

PQUir' yIH) • J(ufi, H) dy (3-14)

Summing over all values of ufj, and ignoring constant terms,

we have -

R p'- p(H) p -(uf 0pUu Yi,H) P(UryH J(u 0 H) dy
H p~ p~fi uir~, i -,H d

I~i pyI U~I

+ HI u p(H) p (ufi yU.iryi)H) p(UirylH) J(ufi=lH) dy (3-15)
H'ir y

Gathering appropriate terms in (3-15) and using (3-3), we

have

Rfi-- p (H) y yiir :

-ir Yi y

i[J(ufi=0'H) - J(ufi=l,H)] dy (3-16)

where

y - (yl, .. ,Yi-l, Yi+l,..,yN) (3-17)

Expression (3-16) is minimized if

P(Ufi=O Uir, Yi) *"

0 if f pt(H) p(Uir' ylH)[J(ufi=O, H) - J(ufi=l, H)] dy > 0=~H Ji,,.,,. ,

,.y

otherwise (3-18)
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Keeping in mind that Uki depends only on Yk for k=l,2,...,N,_

k # i, i.e°,uki = Yki(yk),and using (3-1), we have

,-.,-'. -..N
P(uir JH) = [ p(uji H) (3-19)

j=1
j~i

Using (3-19) and expanding the condition in (3-18) with

respect to H, we have

N
p (H°) ji p (uji lH° ) P(yilHo) [J(ufi=O, H0 ) J(ufi=l, H)]

N
+ p(HI) 1 p(u.jH I) p(yilHI) [J(ufi=O, H1) - J(ufi=l, HI)]

ii
Ufi='~
> 0< (3-20)

ufi=O

Rearranging equation (3-20), we obtain (3-10). Note that

the decision rule of (3-10) is an LRT which is a consequence !

of the independence assumption. The threshold tfi at DF. is

a function of the received decision vector u. which implies

that at each DF. we have 2
N -1 thresholds. The value of each

threshold is different for different values of the incoming

decision vector u. r

Now, we obtain the decision strategies, y.. () for

the intermediate decisions to be transmitted. Expanding the

risk function Rfi given in (3-14) with respect to u.. and

4-5
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ignoring a constant term, we have

R i H u j f p(H)[p(u fi _u1."  u.. = 0, yi

Rfi =H,ufi,_i f [lr' 31 y

- P(UfI u ,y)Ip j =jyi pufi.lOr " i '

p(yj1H) p(uj=0y j )  P(ur' H) J(ufi, H)d. (3-21)

Rewriting (3-21) in a more appropriate form, we have

Rfi =-lj fPIu3 p(H)IY(y H)p (U11YJIj H ,u fi '-i'r •

J(ufi,H) [p(uf iU rU.=O,Yi) - p(ufiruju lv)] dy (3-22)fi i rj i-r ujiz'Y) -1

This expression is minimized if

p(u.. Oly) =

0 if f ,9H~u!r p(H)p(yjjIH) pIuJ, J 'll) J(ufiH)

J iir

ufiufiluJ u (u.Iu• [~uf lU rj.=Ov i ) - puf Ui,y j Y)]..j "

dy] > 0_ _ , .'q

1 elsewhere (3-23)
0

Expanding (3-23) over H we get equation (3-9), and which

completes the proof of Theorem 3-1. Q.E.D.

0
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Note that the decision rule yji(y.) is obtained ,-..

by minimizing the risk function associated with DM. In

tuitively, it makes sense, since the decision u-- is an inter-

mediate decision that helps DMi make a final decision ufi.

None of the thresholds depend upon the observation vector

y, so that an off-line calculation of the thresholds is

possible. The set of thresholds associated with DMi,

{tfi , tji, j = 1, 2, ... , N, j i} can be determined

N-1through the simultaneous solution of 2 + N-1 nonlinear

coupled equations in 2N-I + N-1 unknowns. It is important

to note that these equations are necessary conditions (but

not sufficient) which must be satisfied by the thresholds.

They define locally optimal solutions, each must be checked

to assure that a global minimum is found. In the next sec-

tion, an example is presented for illustration.

3.3. Example

We consider a binary hypothesis testing problem with ,

two decision makers DM1 and DM2 as shown in Figure 3.4. We

assume that there are two hypotheses H1 and H0, where
1S

P(HI) = p, and P(H0) = 1-p. We choose the minimum probability

of error cost function, i.e.,

J(ufi = 1, HI = J(u = 0, H0) = 0 and

Uf i (ufi "0"

J(u fi= 0, H) = J(u i 1, Ho) = 1 (3-24)
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Before we proceed further, we state the results of Section ..

3.2 for the case of N=2. They can be summarized in the

following: 0

A.(y.) > t (u) (3-25)i < fi jiufi=

for i=1,2, j=l,2 j ' i "" '

where

tf (uj) A p(H 0 ) P(ui IH) [J(u fi=, H) J(ufi=O, H0 )]

ji p(H1 ) P(uiiHl') [Jufi=O, HI ) - J(ufi=l, HI)]

(3-26)
The decision rule yji () is given by

A (y) > t for j=l,2 (3-27)U. 0y) <. -. ,-.2 uf=0 J 1-i-,..

Ji
where ".

P(Ho)[P(ufilu.i =l , H0) P(ufilu.i=O, Ho)]J(ufi,Ho)
ufi

£i )[ ~ ' Vkflj P(
uf. = , ,-.

tj P(I)P(filuj i 0 HI filuj i = l ' Hl)]J(ufiHl.- *" '%'

for i=1,2, j=l,2, i # j (3-28) 0

The optimal decision rules associated with DMi, i=l,2,are . .'...I

described by three thresholds at the site i. The thresholds \.-.,..

are determined by solving a set of three coupled nonlinear ,DON

equations in three unknowns. We further assume that the

conditional density p(yiH.) are exponential, i.e., 0,

49 .,
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p(y~iH) exp (-yi)

p(y~iHl) =-*exp (-XI-yi X; > 0, i=1,2

for y. > 0 and %

p(y~iH)= 0 ; i=1,2 elsewhere (3-29)

The optimum decision rules at the site 1 are obtained from

equations (3-25)-(3-28). We have the following equations.

p(yilHl) 1

p(y~iH 0 X T. exp [y.(l - =32 (-30

0 1 21

sions (3-26) and (3-28). We have

1 ( p 21j 0tf1 (u21 ) =1 (3-31)f 21 p p(u 1 jnlj

21 p(uf 1=llu 2 l=l , H0) -p(uf 1=1fu 1=, H0)](l-p)
21 [P(uf1 01 ,1 0 HI) , u - -]

r3-32)

We can evaluate the thresholds using the probability density

functions and the decision rules. Note that expressions

(3-31) and (3-32) are coupled. One needs to solve them

500
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the thresholds.

P(u 21 =l1H o ) = F py (y 2 HO) dy (3-33)Y2 lHo 22 ,:
Yi: (y z > t1

,' - :..% -

Let > 1, then

A2

p(u 2l=lHo) = 2 t 2 1 ) (3-34)

and

p(u 1lJH1)= 2) (3-35) 2: #

Furthermore, one needs to get expressions for p(ufl 21' )

we have. ..

P(ufl=l1u21 , = [A 1 t]-36) (3,-.3

and 1 S

P(Ufl= l u 21 ' HI) = [ 1 tfl(U21) (3-37)

Using expressions (3-31) and (3-32), we obtain the following

coupled equations --

V .% % -,

%• %
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[A t U 0 [Xl t (U~l 1l T~

[ ltfl(U21= O'.M).'~J(L~ ~ ~- ] "- [ -tf (u 1 l  
-

l ", , - < ' " .

1 p I 1 1 fl 2
t

21 1-
11 fp 210 1 fl2

tfl(u =ll) = ~ - 2 (3-38)fl. 21p X2t2

2

1-0

1- (X2t21),

In Figure 3-5, we present the ROC curve for this example. O
G - ,'%. %,

'p.

3.4 Discussion

In this chapter, we have considered the problem of

distributed Bayesian hypothesis testing with distributed

data fusion. We have derived the optimal decision rules

for the system. Due to the independence assumption, the

decision rules are likelihood ratio tests (LRT). At each - * .

N-i1site, we obtain 2 +N-1 coupled nonlinear equations. The

2N-l1N-simultaneous solution of these equtions yield the 2 - +N-

thresholds. These are necessary equations which must be

satisfied by all of the thresholds. There may be several

5

5 2 € .' :



.... 5,

0
J C

00

-4

0

4a) "-- "n
0

-.o A.,-.,-,

0 -

P-. 0

CD

00.00 2. 50 5. 00 7. 50 10.00 .0. -*,.

(X l -1) Probability of False Alarm

Figure 3.5. Receiver Operating Characteristic for

x=2, X2 1.5.

S3S

0

,N

I-.:"-"-

% ---. - -"I" %,% %



.* - ,,'..A..Y. T'r V IN v V V V -7.

local minima; each must be checked to assure that a global A,
minimum is found. In the case of N=2, we obtain the equa-

tions derived by Ekchian and Tenney [51 at each site. The %

results of this chapter can be generalized to the case of

M hypotheses in a straightforward manner. In the next

chapter, we will study the problem of distributed Neyman-

Pearson hypothesis testing with distributed data fusion.

Also, we formulate and solve the problem of Neyman-Pearson

distributed detection for a tandem topology network. S

S4Ss 4 :-.i,,., :

,o . . . . . .e

"e e Z
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CHAPTER FOUR

DISTRIBUTED NEYMAN-PEARSON HYPOTHESIS

TESTING WITH DATA FUSION

4.1. Introduction

In Bayesian hypothesis testing, knowledge of the

a priori probabilities and a cost assignment is required.

In many practical situations, it is difficult to assign

realistic costs or a priori probabilities may not be known.

An approach to bypass this difficulty is to use the Neyman-

Pearson (N-P) test. In this approach, the knowledge of

a priori probabilities and a cost assignment is not required

and, therefore, it has many practical applications. In the

N-P detection problem, we maximize the probability of de-

tection under a constraint on the probability of false-

alarm.

In this chapter, we solve the problem of distributed

hypothesis testing with data fusion using the Neyman-

Pearson approach for various distributed sensor network

(DSN) topologies. The problem of distributed hypothesis

testing with a centralized data fusion using the Neyman-Pear-

son approach has been solved by Hoballah [15].In Section 4.2,

SS j



we solve the Neyman -Pearson hypothesis testing problem

with data fusion for a specific two-sensor system. In

Section 4.3, these results are extended to solve the problem

of distributed Neyman-Pearson hypothesis testing with dis-

tributed data fusion. In Section 4.4, the results of

Section 4.2 are further extended to solve the distributed

Neyman-Pearson hypothesis testing problem for N detectors

connected in tandem. In Section 4.5, we present an example

for illustration.

4.2. A Distributed Neyman-Pearson Hypothesis Testing

Problem with Two Decision Makers

In this section, we consider the system configuration

as shown in Figure 4.1 . The two possible hypotheses, are

denoted by H0 or HI* Each decision maker i, DMi, takes an

observation yip i=1,2. Based on yl, DM1 makes a decision

u E [0,1} which corresponds to the hypotheses H or H

The decision uI is transmitted to DM2. Then, based on u

and Y2, DM2 makes a final decision uf 2 . The joint proba-

bility density function p(yl,y 2IH) is assumed to be known

a priori. The aim is to find the optimal decision rule at

DM and the fusion rule at DM2 using the Neyman-Pearson

approach, i.e., we maximize the overall probability of
detection, Pr[uf2 - H1], given a constraint on the overall

rfu2

probability of false alarm, Pr[uf 2 = 11H 0 .

The problem is formulated as follows:

W
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Phenomenon H

, , Y2' -2
_p $

S

0u'.

DM., DM .2 .

Figu-re 4.1 A T.,o 1-zision M-.!er Distributed
Detection System with Data Fusion.
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(A.l) Let {yf, i=1,2} be a set of conditionally

independent random variables given the hypo-

thesis H.

(A.2) The decision maker 2 makes a decision

uf 2 where

uf 2  = Yf 2 (Y2 , Ul) " (4-1)

(A.3) The decision maker 1 makes a decision u

where

U = YI(Yl )  (4-2)

Under (A.l)-(A.3), the distributed binary N-P

hypothesis testing problem can be stated as follows:

Find the decision rules 2() and yl(.

so as to minimize

F Pr[uf 2=01Hl] + X (Pr[uf2 =lIHo] a) (4-3)

(P2)
under the constraint that

Pr[uf 2 =lLHo] = c0 ' < c (4-4) e

where

X the Lagrange multiplier .

The solution of problem (P2) is given by the ..

following theorem:

,,.
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Theorem 4.1

For the two-decision maker system shown in Fig. 4.1,

the optimal decision rules using the Neyman-Pearson approach

are given as follows:

(a) The optimum decision rule at DM 2 is described by&

the LRT

2(y2 uf <=0 2 u

where

t f 2(u1) x P Fu ' (4-6)

and

a! = p(y2 H,) p(u1 H0 ) dy2  (7

(b) The optimum decision rule at DM1 is described by

the LRT

Ap(y1 H) 1>
A (y) 1YI~ >~ (4-8)

where

tA[p(uf 2=lIul=lHo) - P(uf2=l Ju1=O, H1)] (4-9)0

[P(uf2 Olul=0,H) - p(u 2 Olul=l, Hl)]

andq

% %



- P (uf 2 lUl0 H°) 0IH dy (4-10)
P(uf 2=liUll H°)- "(uf2 :1u 1 :0' H°) 0 dy l 10u = 0 iA(y )> t I

Y1

Proof:

The decision rule at DM 2 is obtained as follows. The

objective is to minimize F where

F = Pr[uf2=01H I] + X(Pr[uf2 =iIH 01 ) (4-11)

Equation (4-11) leads to the classical Neyman-Pearson test .y'.
{y2  u 1 . Inother words, we

where the observations are {Y2 In

obtain the following test [1], -

P(uI'Y2 HI) uf 2 = 1
p (ulY 2 IH > (4-12)

p(uy21H0) U<= 0uf2=O 

Using the independence assumption (A.1), we have

p2Hl) uf 2 =l P(UlIHo)
> 1  (4 - 13)

(Y21Ho) <-0 P(Ul :IJ '

uf2 .,

One needs to find an expression for the Lagrange multiplier
X to completely define the decision rule y(.). Since

Y_ '%-' f
the probability of false alarm Pr[uf 2 =lH i < a, let us

choose

f2 0
.. Pr[uf 2 =lHo] = ct' < . (4-14)..

¢U,'#.



We then have

Pr[uf2 11H o = = i p(uf2=lu I Ho) p(u1 Ho) (4-15)

where

p(uf2=lu 1, Hos) H J p(uf2=l, Y2Jul, H0) dy2  (4-16)

y2

Using Bayes rule, we have
/ ./

P(uf2=lUl', H0 ) = P(Uf2=llUl' Y 2 H) P(Y2Jul, Ho) dy 2
"

Y2 (4-17)

Keeping in mind that uf 2 depends only on {u ,Y2 }, we have

p(uf 2= lu 1 , H0 ) = p(uf 2=l[u 1 ,Y 2 ) p(Y2Ho) dy2  (4-18)

Expression (4-18) can be simplified as follows:

P(uf 2=1ju I , Ho) =

P2: ( ) tf (u f 2=1 uul Y 2 )  P (Y 2 IHo) dY 2 .,'.v- 'v 'p

+P(U 2 1u 1y2  pIy9H d

+ J P(Uf 2=l ul'Y 2) P(Y 2 Ho) dY2  ,-'...

2A 2 ()<tf 2 (u1) (4-19)

(4-19) --- ,

Since p. * 
"

' .'5.*,' _"
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1 if A2 (y 2 ) > tf 2 (u1 )

p(uf 2 =1 ,Uly 2) = (4-20)
0 otherwise

equation (4-15) becomes 1

p(uf2 =1IH 0  p(Y2jH0 p(uIH ) dy 2
U1 y 2 :A2 (.)>tf 2 (u) (4-21)

which completes the proof of Theorem 4-1(a). Q.E.D.

The decision rule at the decision maker 1 is obtained

as follows. Starting with expression (4-11), we have

F = Pr[uf2=0 H1 ] + X(Pr[uf 2 =l1H o I ) (4-22)

Using (4-15) in (4-22), we have

F =  p(uf 2 =01Ul, HI ) p(uI-H 1 ) -. '
U 1  1" '"4."

+ P ( p(uf 2 =lUl, Ho) p(ulIHo) -a) (4-23)
u 1  S

Expanding the above expression with respect to u I , we have .,

F p (ul0IH 1 ) (Do - D )+D o1, 010,1 1,, il

+ [p(u=11H)(D D1  o) + D- l (4-24)1 0[(U = I~ ) 111,o 11o, 11o,o

0

where ,-'4

F-
6 2
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Di P(Uf2 :ilul:J, H = Hk) i,j,k £ {0,1} (4-25)

Writing expression (4-24) in the sam form as (4-12), we S

b.%

have

Ful = p(ul=OHl) + Xl[p(ul= 1lH) - + Cu1 (4-26)

where

Ful - -
A F

010,1 ol,1

X X(D 1,0- D 1 ,)(DI iI,o ljo,o

ul D0 10 -1 011,1 
-p

At - D 101a ul D D
u D ,o - 11o,o

and

A D D N.

ul DooI - o11,1

The minimization of (4-26) yields the following LRT:

P(YlIH) U1- D l l'° - Dl j° °  A
A D 11>o - 1 = t (4-27)

1P(Yll <o Ul= o- D 1 1

and

Pr[u 1oo (4-28)
0 - Dllo,o .,- %\

where

% .- N63
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Priu I l1Ho] : p(y 1 Ho) dy1  (4-29)

1 0o dy i..,o. , ,.
Y 1: 1 (Yl)>_t 1,.,.

v 6
which completes the proof of Theorem 4-1(b). Q.E.D.

In the next two sections, we generalize the results

of this section in two different directions. First, w.-

formulate and solve the distributed detection problem with %

distributed data fusion centers. Then we solve the problem P?

of tandem topology distributed network for N decision

makers.

4.3. Distributed Neyman-Pearson Hypothesis Testing with

Distributed Data Fusion

In this section, we consider the system configuration

as shown in Figure 4.2. The signalling scheme for distri-

buted data fusion has already been described in Chapter 3. r..-...
!a that chapter, we solved the distributed Bayesian hypo- '- "-

thesis testing problem with distributed data fusion. In

this section, we solve the distributed Neyman-Pearson

hypothesis testing problem with distributed data fusion. %

The aim here is to find all of the optimal decision rules •

at each site i,i=l,...,N. At the site 1; the objective is

to maximize the probability of detection Pr[ufi 11Hl] 11-. %

given a constraint on the probability of false alarm _

Pr(ufi ljHo]. We formulate the problem as follows:

fi 0

V .V.
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(A.4) Let {yi, i=l,...,N} be a set of independent1 -+..' .. %

random variable given the hypothesis H.

(A.5) At each site i, the decision maker i makes a

set of intermediate decisions u. where

. (u ,u ui ,.... u(4-30) %'1-Itit ( ill "'" i-1 ' i+l ** 'UiN)

and

u (Yi) (4-31)'. .,

(A.6) At each site i, the decision maker i makes a

final decision ufi

ufi -fi(yi' Uir) (4-32)

where

Yfi .  is the final decision rule at the

site i, i=l,...,N,

and

U. is the received decision vector from the
ir.

other decision makers, •

! ir li'" ' 1 i' i+l i' ., Uli ) (433)

Under (A.4) - (A.6), the distributed binary N-P O

hypothesis testing problem can be stated as follows:

000

%~ %
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At eachDMi 'find the decision rules yi "

andYfi(.), i,j=l,...,N, i j so as to minimize

F - Pr[ufi=01H1 ] + xi(Pr[ufi=lHo] -0 i) (4-34)

(P3)

under the constraint that 0

Pr [uf=lIH < xi, (4-35)Li H 1 a

X.i the Lagrange multiplier at the site i. •

The solution of problem (P3) is given by the follow-

ing theorem:

Theorem 4.2

For the distributed detection system shown in

Fig. 4.2, the optimal decision rules using the Neyman- S

Pearson approach are given as follows:

(a) The optimum decision rule yfi( -) at the site i, -

i=l,...,N, is described by the LRT.

ulP(Yi HI ufil /"''
ii = p(yiHo) <

where

fUr iN p. H)- (uX N4-37)
1i .'- -ji ly-

jai

A ~~and r * ~
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P(uf~i=1H.) = c'

N

p(y, HO). -1 p (u. H y

(4-38)

(b) The optimum decision rule ~ kl2...i1

i+l,.. .,N; at the detector k is given by the LRT

A k y k = P ( y k IH l ) u k i l t k= 1( 3 9

kp~kik) <= 0

where

t ki

k kN
Xi Ek [p (ufi= 1 HoU.rlki= 1 P (uI H Uirluki=Ofl 1Y p(u.. lH 0

U.-j=1
31 jik

k N
[n(u=OIHpuI. 0 )-(u.=OIHiU. 1] P IH)

j~i~k(4-40)

and

k N
CC pk P(u 1H u Lr~ik.=O) HI p(u.. jH)

-31  j~~i,k

J. jlruk= 31 31' 0

j4i,k . "4.

(4-41)

% %'
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OP % N



Proof:

The strategy at the data fusion center i of DM. is ob-
1IV

tamned first. The objective is to minimize Pr[u fi O H 1]

under a constraint on the probability of false alarm,

i.e., Pr[uf 11 lII- = a!j < at~ Let us define F. as

F. =Pr[u [=~]+XPr[uf lH 0  -1 (4-42)
1 fi l 1 i

X>pa.
The minimization of F. leads to the classical Neyman-

Pearson test where the observations are fy>i, u i, j=1,2,..., N,

j il. In other words, we will obtain the following test (11

J)ufi=1 0

A.i(y.) A ., rH) fi (4-43)
1i p(yi, uir Ho) u1=

Using the independence assumption (A.4), we have0

p(yilHl) p(u.r _ H) ufi=l1
-7. (4-44)p(yijH0 ) p(u. IH0  u <=0 1fi

or

p(y~iHl) ufil N p(u H H0 )
> Xj-TIT (f445)

One needs to find an expression for the Lagrange multiplier
0

X. in order to completely define the decision rule yfi(.)

Since the probability of false alarm P~ 1

we choose Pr[uf.=I H a! < at.. ,~Y:
1i 00

69I
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Using the theorem of total probability, we have

p(ufi=lIHO) = p(uf.=l 1iu , H0 ) PQuir IH0 ) (4-46)
ui

Using the assumption that u j depends only on yj, (4-46)

reduces to

N
P(U~~~~~ ~ ~~ II=1 )P(f ~ i p(u.. IH)

where

p(u fi~lluir, H0) = jP(u fi~lIlir yi p(y~iH 0 )dyi ~
yi (4-48)

The probability p(u f.=l11u. _,y..) F- {0,l} depending on the

values of {u ir, y.i } which is the set of observations that

the data fusion center i receives. Following the steps in

equation (4-19) and (4-20), equation (4-48) can be written

as

p(ufi=l~, 0  p(y~iH 0 ) dyi (4-49)

Then substituting (4-49) in (4-47), we get (4.38), and this

completes the proof of Theorem 4.2(a).

The decision rule y.. (-) for the decision maker j for

j=l,.. .,i-l, i+l,...,N,associated with the function F.i is

derived next. Substituting (4-46) into (4-42), we obtain

the expression for F. to be

700
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i p p(u =0 H1,u P(uirIHi

irr

-ir'

k 0)F +I PXui= P(fJ 1iHu 1 pr'u.i H1 ) -u ct. (450 HI -.u~ -

ri -ir=1

+ k P(ufi= 01H 1 '11iruk 10) IT p(uij PukiOIH) *,..

-ir j=1*-~

k N
+ lk P(ufiOI 0 il k1 1 uIH)P(ui=1H

u. 1 ~=1 Jj KJ-ir 
ik

k/~

1 1) ITf~1I 'i Uk (u. I H) p(uk= IH)P~f 1H 0 j=1 ki
ir jik

-ir - j=i,k (-1

We can write (4-51) as

F p (uk.0H) Do, + C 1

+\i[p(uk=1 i D1  C1 -c] (4-52)

do

where

.*p.
5

.g .PM
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k k N
D Ik [p(ufi=OIHl'U ir)U ai =l) -p(ufj=OIHlU ir~Uki=1)Il ffp(u..i 1H1

!-ir j 1 J

(4-53)

k N
co1  :kp 01~OH1  uir Ukl IIp(u..Hl) ,(4-54)

U. j1
-ir j~i,k

k k N
D k [p(u=1 IH lu.rU~i1 -P(u ~11H_,u. _uk.=O)] fl p(u-. IH)-
lo U. j=1

-ir j~i,k

(4-55)

and

k N
C10 = Ik [p(ufi=l(H_ , u) IT p (u. ) H 0 (4-56)

U ir r ui' j =1

Writing (4-52) in the same form as (4-11), we have

Fki P(uki =0H)+ Xki[P(uk.7. 1H)- t~

+ Ck (4-57)

where

F.
Fki D1

X. D
1 10

Cc -

c'k Li D/ 10

and

J..
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The minimization of (4-57) yields the following result

(kHI) Uki= 1

pk(Y=0t (4-58)
PFyk o~ uk<=0  ki'

kik
where t ki is given by equation (4-40) and P(U ki=l11Ho0) is .

given by equation (4-41). This completes the proof of

Theorem 4-2. Q.E.D. -

In the next section, we formulate and solve the prob-

lem of distributed Neyman-Pearson hypothesis testing in a

tandem topology network consisting of N decision makers.

4.4. Distributed Neyman-Pearson Hypothesis Testing in a

Tandem Topology Network

In this section, we consider the system configuration

as shown in Figure 4.3. We solve the distributed Neyman-Pear-

son detection problem for an N-decision maker tandem

topology. The distributed detection network can be viewed .

as a team of decision makers, where each decision maker

receives a conditionally independent observation given the

hypothesis H. The team of DM's desire to maximize the .*-%

probability of detection Pr[uN=IH 1 ] of the last decision

maker, DMN, under a constraint on the probability of false

alarm Pr[uN~lHo] of DM -.

We formulate the problem as follows: 'j,

(A.7) Let (yi, i=l,...,N} be a set of conditionally

• ]

.0. 4 %p 1....,,.

%*p % % -d O

p" ... ,
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Figure 4.3 N-decision Maker Tandem Topology Detection .'.
Network.
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indeDendent random variables given the hypothesis H.

(A.8) At the first site, the decision maker I makes a

decision ul',

Ul = ¥1(Yl) (4-59)

(A.9) At the site i, i=2,...,N, the decision maker i

makes a decision u. based on the incoming decision

and its own observation, i.e.,

u i = yi(Yi, ui-1 ) . (4-60)

Under (A.7)-(A.9) this problem can be formulated

as follows:

At each DM, find the decision rule

i=l,.. .,N, so as to minimize

Pr[U=0Hl + XN[Pr[UN=lIHo]

N N i N N aN

(P4) under the constraint that •

Pr[UNl1H a' < a (4-61)
rNj 0 N- ~N'(-)

where
0

XN is the Lagrange multiplier.

The solution of problem (P4) is given by the follow-

ing theorem:

Theorem 4.3 "

For the distributed detection system shown in 0

-",," ft .tft

et -e
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Fig.4.3,the optimal decision rules using the Neyman-

Pearson approach are given as follows: -

(a) The optimum decision rule X N( at the site N, is

described by the LRT

A P (YNIHl1) N=
AN>N t (u) (4-62)

NoYN u<0 N N-1
N

whereA

tN(u~l N-N ~ ~ 1  (4-63) A*I

and

P(uNlH =NE

(b =j f (YIHO) dy PNlIHO) (4-64) V

()The optimum decision rule y.) at the site i,

i=2,3,...,N-1, is described by the LRT00

0
A. A p(y~iHl) ul 1 .u.

A (y > pt~j~ (u (4-6S)
i pyi1o u u-u0 i

where%%

I~. H0 [P(uN=l Ju.=lH') - P(uN='Iui=OIo)I
1i-i N P(uilLHl) p (u =Olui=OHl - P(uN=o iui=l,Hl) 1

(4-66)

and

V. '.A

%
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N (UN 1 ui=o o )

p(UN=l lui=l,Ho ) -p(uN= Iui=OI o )

- p(yiIfio) dyi p(ui- 1 Ho )
i-1 Y :Ai(')>t. ( ' .

(4-67)

(c) The optimum decision rule y() at the site 1 is

also descr-bed by an LRT:

p (y l[H )  u I  
.= - -,

u 0
1 ( y 1) P Yl1 Ho) ui=0 ~ 1 (4-68) "P: J

where 1

P(UN llUl=l Ho ) P(uN=l Ul=0 Ho)
t P 0 ,  _IU (4-69)

1 N p(uN=Oju =0 H~ pIuN uul~l,fTl)

and

cc- p(u N =u 1=0,H 0)
_ _ _ (Ui ll=OH o ) ..... - P(ylJHo) dy 5 '
P(UN=llUl=l,Ho) P(UN=l -0,Ho) l1

V l A l ( -) > t l '

(4- 70) %%

Proof:

The decision rule at D N is obtained as follows. -
N

The objective of the distributed detection network is to

minimize the overall probability of miss Pr[uN=OJHl] under

a constraint on the probability of false alarm Pr[u =l IH o =
N 0

We construct the function FN .  .
.., ,' .

%,%, %',,'..-. ' " &



T7 .7% Po
m

FN = Pr [uN=0HI] + XN(Pr[uN=IHo] -0 N (4-71)

The minimization of (4-71) leads to the classical Neyman-

Pearson test where the observation set for DMN is {YN,UN 11.

In other words, we will obtain the following test [1].

%

~ u~lHl) N
P(YN' UN-I >H)u~ ''

=-0 (4-72) -P (YN' UN- 1 I o N-" '.- ..

Using the independence assumption, we have

P(YNJHl) uN=l P(uN-1 lHo) (4-73)
P(YNIHo) , N p(uN-1 HI

One needs to find an expression for the Lagrange multipler

in order to completely define the decision rule yN(. ..'N
We choose Pr[uNI -a < a and we haveN= N - N

P[UNlHo = N [ p(uN=l, UNIHO) (4-74)
UN-1

Using the theorem of total probability, we have

dr

Pr[U N=lI Io] 01 P(UN=l1UNl" o ) P(UN-l Ho ) -
uN-1 (4-75)

and1, as before we obtain

I Pr{u,.=I., 1 P 1 c p y\ Ho) PV P(uN-IHI o)

(4- ) ''

r* "
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This completes the proof of Theorem 4 .3(a).

The decision rule yi(.), i=2,3,...,N-, is obtained

next. We start with the function FN)

FN  Pr(uN=OIHI -+ XN [Pr[N=lIH] cN] . (4-77)

Expanding the probability f miss and false alarm with •

respect to U 1 , we have

F= P(uN=OuilH1) + XN [ P(UN=luiH o ) - c1N] (4-78)

u- -

Using Bayes rule, we obtain . p-

FN = P(UN=Olu i, H1 ) p(uilH I)
u.i

+ XN[I p(uN=llui,H o) p(uiiH o) - aN] (4-79)
u.

Gathering similar terms and ignoring constant terms, we

have 0

FN p(ui=0IHI) D° 
.

+ N[P(uilHo) D + C -N1 (4-80)
N o 0o10NIo 'N

where

Dl P(uN=0 ui=0H I )  P(U N= ui ,HI) , (4-81)

1 % %=%

\- w'%.N
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Dlo P(U 1ui Ho) PUNui=,Ho) (4-82) ,

and - _

Clo = P(UN=iIui=0,Ho) (4-83)

Writing (4-80) in the same form as (4-11), we have

FN P(U0H + XN Ulo [P(ui o =o1l•

= ol Dlo

(4-84)

The miaimization of expression (4-84) yields the follow-

ing LRT,

u..1 u=I
P(yi' ui-i Hl) Do . _

. - X N lo (4-8S)P(Yi' Ui- [o u>- Dol.

1 000

Using the fact that Yi does not depend on u.- ,we have

.-, . .

P(YilHI )  u.= 1,-.0 P Ui_ IHO%0
p(yilHo) u<=O N D P(Ui_l1 H) (4-86) -

and

c

N 10

pup(yi o HD) p(uI°  dy, (4-87)

P Uj 1 yi.:A. CW>t. .

which completes the proof of Theorem 4-3(b).

The decision rule y 1 () is obtained as follows.

Ulsing the function F we have
N'

S *~S

N%" () L. _
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F DN = Pr[UN=0H1 + XN[Pr[uN=11H] N] (4-88)

Expanding FN with respect to ul, we have

N (UN='ulIHIl) + XN[ U-U aN

(4-89)

Using the total probability theorem, we have

FN = p(uN=IuI,Hl) p(ulIHI ) + N p(uN=lul,Ho) p(ulIHo) - oN]
(4-90)

Gathering similar terms and ignoring constant terms, we

have

A a - BI  -,.._" ";FN (p(ul0IH1 ) + XN A1 0 [P (l=1IH 0 )- N Alo, (4-91)

A01  lo

where %
S N A1  (4-92) "

U1  NAol

cc -- B, %"

a' -A aN Blo 4

-~ .d 4%

%..'" \,*..• A (4-93)

A1  = P(uN=l Ul=l,H) - P(U=1u=OH (4-94)

Ao #P 0( uI=0,HH) - P( uN=0 lu=I,Hl) (4-95) _ZAo i- p u N =  P..uN_ .

and
NN

Blo P(uN=llu =0 ,Ho) (4-96)

The minimization of expression (4-91) yields the follow-

ing LRT,

.--. %



p(yl HI) Ul l I
> (4-97).-,,.,,-,

P(Yi ~ ~ 1~") U0 1l- -,

and 4
P(Ul=1 Ho) =L (4-98)

This completes the proof of Theorem 4-3. Q.E.D.

Theorem"4-3. Q.E.D.

4.5. Example

We consider a simple binary hypothesis problem with *..

two decision makers DM1 and DM2 as shown in Figure 4-1. We

assume that there are two hypotheses H1 and H The obser-
0 V

vations at both decision makers are exponentially distri-

buted, i.e.,

P(YiIHo) = exp(-yi) (4-99)

'1 0 1 •11 V
-i exp(- yi -, '€.

a. > 0 i = 1,2 yi > 0 (4-100)

and ,

p(yiHj) = 0 i=1,2 otherwise (4-101)

The optimum decision rules Yf2(
-) and y1 (.) are obtained

using Theorem 4.1, we have

Ai(Yi) = P(Yi I) _ = exp y (1 -- )] (4-102)

i = 1,2 -

82
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The decision rule is given by

u.=l

whA isi > ti (4-103)

u0  i

forihe two dqiaetectoaegvnb

Yi > Ot. ln = ex t!) (4-104)

11 00

From (4-6)andit (4-aseal)an the twpshld baify the is

followingwosetetr ofe equations

P (et ex (- t ) (4 10S
Fi di i

P ~ ~~ e(p( t x(-!e(416

Mx( t{/61 )

1 -1

- e(p[ =1 1 (4-107

*%** ',.

and.
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p (U 1 =0 IH 0)

t 2 (ul:0) = X p~Til=0lUl)

1 - exp(- t)
X - exp(- ti/0 I )  (4-108)

and -

P(U =lulIH ) - n(uf2=1u=OH 0
t I  p(uf 2=0UlO,Hl) - p(uf 2 0Ul=l,Hl

exp[- tl(ul=1)] - exp[- tI(ul=0)]

t(Ul--) 2 (u 1 =0)
exp[- - exp[- 2

where

S ex (4-110)

Finally, using (4.7) we obtain

,= P ulHo) p(yZHo) dy 2  (4-111)

1 Y2:A2()> t 2 (U)

. % %-

P(Ul = 01H) P(u 2 =ljul=0,Ho) + p(u=ljlH o ) P(u 2 1lul=1,H o )

(4-112)

then A'

= [1 - exp(- tj)] exp(- t (ul=0))

+ exp(- t1 ) exp(- t'(u 1  1)) (4-113)

Solving (4-107), (4-108), (4-109) and (4-113) simultaneously, p

we obtain the desired thresholds. We show the ROC for the S.
".' .5 .

case when 1=2 and 02=1.5 in Figure 4.4.

841
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4.6. Discussion

In this chapter, we have considered the problem of

distributed Neyman-Pearson hypothesis testing for two dif-

ferent topologies. First, we solved the problem of dis- S
V.'. k-*

tributed hypothesis testing with distributed data fusion.

Then, we solved the problem of distributed detection for -

an N-decision maker tandem topology. In both cases, we

derived the optimum decision rules for each decision maker.

We have shown that the threshold equations are coupled.

One needs to solve these equations simultaneously in order •

to obtain a solution for the thresholds. There may be

several solutions for these coupled nonlinear equations.

Each solution must be checked to assure that the global .

solution is found. We have also shown that the decision

rules are likelihood ratio tests, this is due to the inde-

pendence assumption. The present analysis can be extended S

in many directions. For instance, the case of M-ary hypo- r. [l

thesis testing with N decision makers can be considered.

In the next chapter, we consider the problem of distributed S

sequential detection.

'AL
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CHAPTER FIVE

DECENTRALIZED SEQUENTIAL HYPOTHESIS TESTING "..' S
S.1 Introduction

The decentralized sequential detection problem has

received some recent attention [10,11]. In [10], Teneketzis _

considered a decentralized version of the Wald problem with

two decision makers. In his model, each detector was given

the flexibility of either stopping and making a decision or

continuing to the next time stage. The coupling between the

two detectors was introduced through a common cost function.

His results show that coupling causes considerable complexity

in the computation of the optimal stopping rules. In [11],

Hashemipour and Rhodes examined a two-step, two-detector, .9

hypothesis-testing problem with a data fusion center. They

also discussed its straightforward extension to a decentra-

lized multi-stage sequential detection problem. Their model

is different f-om the one examined in [10]. In [11], the

sequential test is performed at the data fusion center and

local detectors have no control over the termination of the

test. .

Here, we make some further contributions in the area

of distributed sequential hypothesis testing. First, we

%."%

%- *,
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solve the distributed sequential detection problem for a

tandem topology. This is a multi-stage extension of the

work of Ekchian and Tenney [5]. Then, we solve the sequen- -_

tial probability ratio test problem for the same model as

in [ll].Here, however, we use the Neyman-Pearson approach

for the solution of the problem.

In Section 5.2, we briefly discuss the centralized Wald

problem. The results are used in Section 5.3. In Section

5.3, we formulate and solve the decentralized Wald problem
for a tandem topology network. in Section S.4, we formulate

and derive the decision rules for the decentralized sequen- . I

tial probability ratio test. Finally, in Section 5.5 we

discuss the results of this chapter.

, ° -o-',

5.2. The Centralized Wald Problem .

In this section, we present briefly the centralized

Wald Problem and its solution. The Wald Problem is a well

known problem in statistical sequential analysis [13,181. 0

It can be formulated as follows:

(A.1) Consider two hypotheses {Ho, H I where the a priori
0S

probability of 1I1 is given by -'

Prob[H o ] = Po (5-1) -
0 0 .%

%

-. , ..
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(A.2) Consider a detector whose observation at time t

is denoted by yt" Let {Yt; t=l,2,...} be a set . .

of independent random variables. Based on
t A

y  (Yl' 'y t ) ' the detector makes a decision

u given by

tu (y u C {0,l} (5-2)

where y(-) is the decision rule.

(A.3) The cost of making a decision u at the detector is

J(u,H), where H is the true hypothesis.

(A.4) The detector must make a decision u no later

than t=N. Then the Centralized Wald Problem is to

Minimize E[J(y(y t ) , H)]

(P5)
Subject to (A.1) - (A-4) (5-3)

where

F = Set of all stopping rules -

The solution to problem (P5) is given in [13]. It can

be summarized in the following theorem:

Theorem 5.1

The optimal decision rule at the detector is de-

scribed by (2N-l) thresholds K, -1,l' 7' i' N-. The'

thresholds can be obtained from the following equations.

,- 
-"

%. NqN*N.n.
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At t =k (k=1,2,.. .,N-1)

-E [J ( k P(yk+l IHO) W.

Yk+l k+1 OLk P(yk+l JHO) + (1CL p(yk+lI l))I

(5-4)
and

6 J(0,O) + (1 - 6 k J(110)

-E [i ( k P(yk+lIo
Yk+l k+1 (2 kP(yk+i JHO) + (1-3 0 P(yk+l IH I)

where (5-5)

Jk(p(HoIy k minfmin E{ J(u,H)ly k 1,

E k+1W ~(P"ly M (S-6)

and

E U) denotes the expectation with respect to *'

Yk+1

p k
(y~k+l'ly

At t =N

N J(1,O)+ J(0,1) -(,0 J( 1,1)

J(O,) -(OO - J1,1)(5k

At each time t,t=l,. ..,N, the detector evaluates P(f1.IVk

using its observation and. compares p(l v)with and
0 t t

(or \,if t=N) and decides to stop or continue according

to the folloi~ing rule:

;1A~~~-- ". P
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eV
0

At t k (k--,. .,N-1)

if P[Hl y k] < a decideH
kif p[Holy k  > 2k decide H°,

k

if k< P[H Iy < gk ,continue to take
observations. •

(5-8)

At t N

if P(Ho YN) > Z decide H

if p(HoJyN) < ZN N decide H1 , (5-9)

In this section,we have presented the centralized version

of the Wald Problem - its formulation and its solution. In re

the next section, we formulate and solve the decentralized S

Wald Problem for a tandem topology network.

5.3. The Decentralized Wald Problem for a Tandem 0

Topology Network

Consider the tandem topology network as shown in ,,

Figure 5.1. It consists of two decision makers DM and DM 2 .... -

connected in series. In this section, we formulate and-

solve the decentralized Wald problem for the system shown-4]

in Figure 5.1. -''-,'

The problem is formulated as follows:

~91
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(A. ) Consider two hypotheses {H° H) where the a priori

probability of H is given by
. (s- 0)

Prob [H 0 P (5-10)

(A.6) The decision maker 1 makes a decision ut at time t

given by

S t = Y(X ), ut 6 {0, 1} , (5-11)

where y ( - is the decision rule at DM I, and

t (Xl,...,xt) represents the set of observations 0

at DM 1 up to time t.

(A.7) Define u (Ul,...,ut) where ut is the decision

of decision maker 1 at time t.

(A.8) The decision maker 2 makes a decision vt at time t

given by

vt = v(yut) , vt  {, 11 (5-12)

where y (') is the decision rule at DM2, and

t A

S(Y,..Yt; u ) represents the set of obser-

vations at DM 2 up to time t. Note that also
12 aY U

contains ut, the set of incoming decisions from 0

DM

(A.9) Define vt (Vl,...,vt) where vt is the decision of

DM 2 at time t.

% 4.
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(A.10) The observations {x,. . .,x } and{yl,...,yt} are

assumed to be mutually independent given the

hypothesis H, i.e., -

t t
P(xl,...'xt' YI''''YtH) = p P(xiH) R p(yj ]H).

i=1 j=1

(5-13)

(A.l1) The cost of making the final decision vt at DM2 is

J(vt,H) where H is the true hypothesis. Furthermore,

we assume that

J(O, H1 ) > J(l, H1 ) (5-14) WIN

J(l, H ) > J(O, Ho) (5-15)
0 0

(A.12) DM1 performs a nonsequential test and yields a Z

decision ut £ {0,I}. DM2 performs the centralized

Wald test and yields a decision vt c {0,1, continue).
DM 2 must make a final decision vt c {0,1} no later

than t = N.

0
Under (A.5) - (A.12), the decentralized sequential

detection problem is to obtain all the decision rules so as

to

Minimize E{J(y (yt), H)} ,-%-v u

Y :{Yv(') , yu t)}c Ft

(P6) subject to (A.5) (A.12)

where t is the stopping time of DM2 and t

is the set of all the stopping rules (5-16) %

0

93 >



The solution of the problem (P6) is given by the

following theorem:

Theorem 5.2

For the system shown in Figure 5.1, the optimal decision -

rules for the two-stage decentralized sequential detection

problem (N=2) are as follows:

(a) The optimum local decision rule at DMI at time I is

described by the IRT,

1 Ap(Hljx 
1) u I =

ApHIx u> tu (5-17)
u 1 (H x I) u < 0O U

where 
0

_A l(l, HO) - l(O, Ho)

u ZY(O, Hl) - l(l, H) (518

20
El(u 1 , H) A EIH 2 (u2 , H)

and

Z (u 2 , H) - 2 p(v 2 fu 2 , H) J(v, I) (5-19) 0

(b) The optimum local decision rule at DM1 at time 2 is I

described by the LRT,

2 p(HIx 
2 ) u ( =1

(x > t (u) (5-20)
p(H 0 Ix 2) u2=O u2

where

Il P

94
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2 2(ul PU2 l,1-) 2 Z(u 1'u2=0 H) (-1
t~ (u) (5-21)1

2 ~ 2 (u1,u2= H1) - 2(, 2= 0

(c) The optimum decision rules at DM 2 are described by

three thresholds Z2 aL1, % The thresholds satisfy the

following equations:

At t=l

c1 J (O 1) + (1 -t 1) J(l,l)

cE 1 pu2''2 Jo)
EY2,u2 ~2 [Cc Ip(u 2 ,y 2 IH,)+ (1 OL 1)P(u 2,y2 JH1 )1

(5-22)

and

~J(O,O) +- (1 - 6 J(l,0)

El 1P(u2,y21)
EY2,u 2  2[B1P(u2,y2 JH0 ) + (1 1) Pcu 2,y2 IH1 )

1

(5-23)

V where

J, [p(H 0 I)i

min{ min E {JcvtH)l K) (5-24)
uS

2
E2 pH0YM
y2 ,u2

At t=2

j-(1,O) +J(0,1) - 0,0) -J(1,1) (5-25)

N-

96



Aeach timet , DM evaluates P(HoIYt ) using its observationtt

and compares p(H ot) with a and 1 (or Z2 if t=2). De-
0 Yul 12

cision maker 2 decides to stop or continue according to the -

following rule:

At t=l

if p(H lyul) < a, decide H,

if p(H llui) > I  decide H° ;

if cc < p(H olyUl) < , continue to take

observations.

At t=2

2if P(Ho Yu) >2 decide H 0

if p(Ho Yu2) < Z decide H1  (5-26)

where •
2 A y,

Yu {yl'Y2' Ulu 2} and y {yu 1 *I

Proof:

The objective is to minimize ,

R E {J(vtH)} (5-27)

The decision rule at time 1 for DM I is obtained as

follows. Writing (5-27) explicitly, we have

2 222 2 2
R H 2  p(uv 'x 'y H) J(vtH) dx dy

H,u ,v 2f 2

x 2y (5-28) . .

"1I** We define
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E,(u H 2jp(-Y uH J~vtH) dy2  (5-29)
V 22 2~

Substituting (5-29) in (5-28), we get

2 22 2 2
R 2 f p(u'x , H) dx E2 (u ,H) ,(5-30)

where

p~2  2 u u H ( x)

p(Hlxl) p(xl) (S-31)

Using (5-11) , (5-31) becomes

p(u 2 x 2,H) pj 2, 2 ul,x1 ,H) p(ullxl) p(Hlxl) p(xl)

a. (5- 3k)

Substituting (5-32) in (5-30), and integrating with respect

to all values of x 2, we have

R- z2 p(u 2 fjul,x 1 ,H) p(ullxl) p(Hfxl) p(xl)

Huxl

dx1 E2(u , H) (5-33)

Expanding with respect to u1 and ignoring a constant term,
1.

p we have

xl

{ ~p~ 2!u0H E2(ul=O~u2 f1)
U2 2

2 % . %

=, H)I (5-34)
P(u2 lul=1,H) Z2(u1 2'

U2

98S
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Expression (5-34) is minimized if

p(u101lx1 ) 4-

0 if p(Hjxl){ p(u2Iu,=0,H) ~2 u=, 2 H)
H

2 2

1 otherwise (5-35)

Expression (5-35) can be written in a more convenient form

as

0 if EHx {Euu 0H ~2 uj, 2 H)

1 otherwise E u H2 (lI ZH >0 (5-36)

We define

From (5-14), it follows that

(5-38)

Using (5-38), we then obtain the following decision rule0

a t DNI at time 1,

991
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U =
A (Xl t (S-39)

U1  ='0 ~
1

which is the desired result as stated in Theorem 5.2(a). S

Next, the decision rule at time t=2 for DM is obtained.%

Starting with expression C'5-30), we have

Rp~U,'X ju ,H)d T PH) (5-40) -

H u -12A.

Using Bayes rule, we have

p(u 2 x 2,H) =p(u 2 x 2,H) p(Hjx 2 p(x 2 (5-41)

Using (5-11), we have

p~2 ~2 ) pu 2 x2 2 2 (-2

Furthermore, -

p~u2 Ix2  =p u!u1 x4 p(uljx2  (5-43)

Using (5-11), we have

~2 2(54p(u jx ) '2 1 x )p(u~Jx 1 ) (-4

Substituting (5-44) and (5-42) in (5-40), we obtain

Rp(Hjx) p(u2 u, p(uljx1 ) p(x

2, 2 (S-45)

Explicitly summing over u,, and neglecting a constant term,

we have

1)00



2 2) x1 ) ) dx

R pIu 2 -Iulfx) P(l )px 0..

1 2
X

{ ~ (HI x' [(u 11,7=0,Hl) -Y(u 1PuI=l,i)]}(-6

H

Expression (5-46) is minimized by settingAA

2S

if~~~~~ p Hxp..IUH)

r ~ 0 f~pHx)Z u, 2=0'fH) - 2 (ul,u 2 =1,H]>

1 otherwise (5-47)

We assume that

Z (UU = ,Hl) - Z,,(ul, IH
212'1. 1

(5-48)

(ul = I,H )> u9 O,

Note that (5-48) follows from (5-14). Expanding (5-47) over

H, we obtain the decision rule for DM, at time 2A

US

A (x-) > ( S-9u < 1  (549
2u 2 1 2 v

which is the desired result of Theorem S. 2(b).

p.We need not prove part (c) of the theorem in detail

because the results can be obtained by it straightforward

application of the results of Theorem 5-1. This completes

the proof of Theorem 5-2. Q.E.D.
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In Theorem 5-2, we presented the results for the

two-stage decentralized sequential detection problem for a %

tandem configuration. The above results can easily be ex-

tended to the multi-stage decentralized sequential detection

problem. The results are stated in Theorem 5-3 without .~*

proof.

Theorem S-3

Consider the configuration shown in Fig. 5.1. The

optimal decision rules for the multi-stage decentralized

sequential detection problem are given as follows:

(a) The optimal local decision rules at DM1 for

t=l, . . .,N, are described by the LRT's given below.

u =1
At t=_11 Au (x1  >1 (S5)

U1 u <=0 U1. 4.

ut1

For I<t<N A (xt > t (U )- (5-51)r
ut u<~ 0 u

t

U =1~

At t=N, UN tu (U ) (5-52)-

N

where

102
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S (1, H E(0, H)
t 0 0 l
u E (0, HI) zI (1, H1 )

t - 1WN

A ut t 10 H ) WA
tu (ut _, o

t (u t ,0 , H) Et)(ut , HI 4

1 < t< N (5-53)

t AE (u, H) E E (u H) (S-54)
UN **t+l u ,H

N AN N
EN(uN, H) IN p(v Iu NH) J(vt, H) (S-55) .

= E NN J(vt H) (5-56) • "vlU N ,H t-.-,

and •

A (xt) P (H I .x (5-57)U (HO Ixt

*0

(b) The optimum decision rules at DM2 are described by
2.. '"""' ".-. - -

2N-1 thresholds al. a2'''''UN-1' 1 62''NI, and ZN"

The thresholds satisfy the following equations.
O

At t=k (k=l,...,N-l)

-'k J(0,1) + (1 - t-k) J(1,l)

~ %~~~ k P(Yk+l'Uk+l [o )]---.

Yk+ I, Uk+l k+1 -p (yk+l'Uk+l~o) P.yk+4 'uk+li [1.

(5-58)

%1 0

%.5 % .. '.
% I J oA "



--(5 59)

and

a J(0 0) + (1 0 J(l, 1) 0,)J,

E u 0k+l IH + p Ckvl Pykllo)lR,
A k+ea k+ t, DMk2 vlaesHo+( ) w p(yk+ladkl Io

(5-59)0

At t = N

J(O, 1) HJ 1) (Sc60)
RN J(1, 0)- + J(0, 1) -J(O, 0) -J(l, 1)(560

At each t t, e t  p(H ) with a and (or

<N if t=N) and decides to stop or continue according to the

following rule.

At t = k "

t S

ifP(to i y t ~ <- ON decide Ht "¢# .#'''K

0 u - t

if p(H IlY) >i. decide H

0 if t

if <' p y) continue to take

*observations (5-61)

At t N

f .l. .t > z. decide 11

i f 0 u .'.-if P1 y)< z ~ decide 111 (5-62)

0 u N

104~
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Next, we consider the decentralized sequential probability

ratio test problem using the Neyman-Pearson approach.

5.4. A Decentralized Sequential Probability Ratio Test

Consider a distributed detection network with a data
_

fusion center as shown in Figure 5.2. We solve the problem

of decentralized sequential probability ratio test. We use

the Neyman-Pearson approach for system optimization.

0

The problem is formulated as follows:

(A.13) Consider two hypotheses {H ) } where the a priori

probability of Ho is given by

Prob [H = P
0

(A.14) DM1 makes a decision ut at time t given by

u t  Yu(Xt) , u t { , 1} (5-63) S

where yu( .) is the decision rule at DMI, and

xt (Xl. xt) represents the set of obser-

vations at DMI up to time t.

(A.15) DM2 makes a decision vt at time t given by

vt v(y t ) vt F {0, 1} (5-64)

I OS
105I
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where yv ( .) is the decision rule at DM 2 and y (Yl''''Yt)

represents the set of observations at DM2 up to time t.

(A.16) The observations (xl,...,x t  and (yl,...,yt} are

assumed to be mutually independent given

the hypothesis H, i.e.,

t t
p(xlp''''xt, yI,...,ytIH) = il p(xijH) Hi p ry. H)

i=l J=l j

(5-65)

(A.17) The data fusion center performs the centralized

sequential probability ratio test which yields the

final decision dt given by ;;N

dt (ut, vt) , (5-66)

where (ut, vt ) are the decisions at DMI and DM2 at time t.
t12

Under (A.13)-(A.17), the decentralized sequential proba-

bility ratio test problem is stated as follows:

At each decision maker and at the data P
fusion center ,find the decision rules yu(.), ¥v(.),

and Yd (.) so as to minimize the function F given by

(P7) F Prldt=01H1I + X (Pr[dt=l!H0 I -

under the constraint that (5-67) %. 0

Pr[dt= IH] =c < ( IK

and

x the Lagrange multiplier

107,U



The solution to problem (P7) is given by the follow-

ing theorem:

Theorem 5.4

For the system shown in Figure 5.2, the optimal de-

cision rules for the two-stage decentralized sequential

probability ratio test problem are given by

(a) The optimal decision rule at DM1 at time 1 is -

described by the LRT.

Sp(xU=l S

A 1 > AH (5-68)
p(x IH0 ) Ul 0

where

0 0-
A (u =lP H) - (Ul=0 H

u 1 1 (S69O. 0) (5-69)
u1 Z 1(u =0, H) - 1 (u =1, H

and •
Z i  H.) = E Zi (uuH.

ZI(Ul '  u2 1Ul,H j  2(Ul'U2'H

Z Ij = Z2 p(v IH) p(dt=iu 2,v ) . (5-70)2(Ul'U 2 v t7.

We also have , 'N _

0
01 -l(Ul=O , H0 ) (5-71)

ZO(ul=l, H) - Zl(u=0, H0)

,A,
SoS
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(b) The optimal decision rule of DM1 at time 2 is described S

by the LRT

p(x 2 IH) u2l, ,

-A (x 2 1 (5-72)
2 p(x 0H) U2  2

where

E' 02us =, (Ul'U2=0'Ho)S(5-73)

2 2 (UU 2 =0,H1 ) - 2 (UlU 2 =I,H1 )

2 1 2 Ul,U2=,1o

aU E 0 tuo)  = 0

2('p2u 1 o 0 (5-74)
2 0 E0 u~l ,)- 2(U1 , U2 = ,H

and

P(ul=0,u 2 =0nH) = fJ P(XljH) P(x2 H) dxldX2

D

where D - {x2: A (x 2) < tu(-) and A (x 1) < tu } (5-75)
U 2  -U 2  U 1  u1

(c) The optimal decision rules at DM2 at times l and 2 are

obtained by interchanging x with y and u with v in

equations (5-68) through (5-75).

%
(d) The decision rule at the data fusion center is given

by the following equation

At t=k (k=l,2,...,N-1)

A P(Ut' vt IH1)

If(Ut vt[Ho) > T decide H -
d t v p tviH0 ) -11

If A <T decide H 0d-< o o %<

t10
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If TO < Ad < T1  continue to take
observations (5-76) 4

where

T A M (577)To 1 -PF 5 7)s

and

M 1 P(5-78)

fPM' PFI are the pre-assigned probabilities of miss and

false alarm respectively.

At t=N

P(UN, VNIHl) t= 1

If A( > T (5-79)

dt= 0

where Tf is given and satisfies

T< T < T

Proof: S

The decision rule at time 1 for DM I is obtained as

follows:

The objective function

F = Pr{dt=01H I} + X[Pr{dt=11H o } - a] (5-80)
0" 2 -

is expanded with respect to u 2 and v2 to get

110
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F = 2 p P(dd=tu 2  
i2 2,d )- ] 2 -21 , IHQ+ X[ 22 t lu ,v2IH0)U IV U ,VO -. o-

(5-81)

Using Bayes rule, (5-81) yields •

2~ 22 2 2
F 21 2 p(dt=Ou Iv ) p(u ,v H1)

2 2 2' 2x[ 2X 2 p(dt=l lu  v ) P(u vi H 
0 ) - c] (5-82)

Using (5-63) through (5-65), we have

F= 2 p(u 2 [H1 ) 2 p(viJH 1) p(dt=0Ju v

u V

+ X[X2 p(uiJH ) 2P v IHo P(dt=llu vi) -a ]  (S-83) ,u ov

We define

2 H(uI'Ho)= 12 p(viHo) p(dt=0[ui) (5-84)

V

and 1

1 2 2 2 2
Z2 (u ,H1 ) = '2 P(v IH1) p(dt=llu ,v) (5-85)

V
Substituting (5-84) and (5-85) in (5-83), we get

F X,-.,' 2" -.12ulu2Hl
1F= Z P(U1 ,UijH 1) Zi(Ul,U2 ,H1) "-'- '.-

u2,u I

+ X 2 Pl 0)E2(u I u -0) (5-86)

u2 ul I

' %.
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Expanding with respect to u we have

u) 2

+ p~jPu =lH ull,H) E (u =1,u ,H)
U 

2

0

+ ( = ~~01H) p(u21u1 =O,H0 ) E (u Ou H
U 2  0 2

- t](5-87) :

Expression (5-87) can be written as

*F =p(u =01H) Dol + Col

[P [p =1 1H 0  D10 + C10  a c] (5-88)

where

D p(Uuu=0,Hl) E (u =O,u 2,H1
U2

'F, - ~p(U 2 ~ 1 , 1  2 (u =1,u 2,H) (5-89)

u2

or

* 2 ul=0,H 1 1  21 1A

E Eu=1, 1  (u =1,u2,H) (5-90)

112
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C E E (Ul=lu2H (5-91)

0(ll u2 Hu=H 2 1 2

u2  S

or
0

= U u 0 (Ul=1,u2 ,Ho)lo 02 u l=  02

0

E u2 u=,Ho E2 (U=,u2H )  (S-92)

D = 0 (u =0,u2 o)

l~o u 2 lu =0,, °  2 , 2$ 0:

Ignoring the constant term Co, an'. dividing by Do, c--,,

equation (5-87) gives --. ,'

P(uI=0HI) + EuI[P(UI=IH) 0 (u I H (5-95)

21u 01

C u -$ H (5-94)

o 221 2

U 0

agrnd (5-96)n er l a, ivdn b l

equation (5-97)
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By minimizing (5-95), we obtain the following LRT: ___

1 (5-98)
1= Up(x lH 1) uj 0 1

p(Ug=OIH1 ) = au (5-99)

This completes the proof of Theorem 5-4 (a). -S

The decision rule at DM1 at time 2 is obtained as d.

follows. Starting with expression (5-86), and using the

fact that decision uI is known at time 2, we get

F p(ui,u IHU 2 (U 2'I H)

u2

U2

0
+ X[X p(u1,u IH) E (uu 2,H0  a] (5-100)

U2

Expanding F with respect to u2 and ignoring the constant

term, we have

F+ [P(Ulu,2=1H 0) [ 2 (Ulu 2=1,H0) - 2 (Ulu 2 =,H 0)]

-~ .N :%'. I "

+ 2(u1Iu 2 0,H0 ) c ] (5-101)

Expression (5-101) can be written as

%• %

%S

'p.'
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F = p(ul,u 2 0H I ) + Hu 2 [p(u l u  o -21 ] (5-102)

where 
S

E 0 (Ul. ,HO(l2=l 0o 20 2 06r-<

u2 1 ( 0  (5-103)

ccU u2=0 Ho 0, .Hcc (5-104)

Minimizing (S-502) yields the result in Theorem S4 (b). -

The decision rules at DM at time 1 and 2 are obtained

using similar derivations as in part (a) and (b). >.. -".

We need not prove part (d) of the theorem because the V'",

results are a direct application of the classical results on .

the sequential probability ratio test. This completes the

proof of Theorem 5-4. Q.E.D.

In Theorem 5-4, we solved the two-stage decentralized

sequential probability ratio test problem. The above results

can easily be extended to the multi-stage decentralized .... .-

sequential probability ratio test. The results are stated

in Theorem 5-5 without proof.
:4

Theorem 5-5

Consider the configuration shown in Figure 5.2. The

optimal decision rules for the multi-stage decentralized

sequential detection problem are given as follows:

0
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(a) The optimal local decision rules at DM1 for t=l,...,N -

are described by the LRT's given below %

=1

Au (x 1  u<0 U> t=l , (5-105)

U t  1 "* . . - , " "

Aut (x <= 0 ut i);

utl

A (x > x (u t -  1 < t < N , (5-106)

U u 0 t
t

N= 0AuN(XN u >  A u (u N - 1 )  t=N ,(5-107) "]

N

where
0 ( Ho  - 0

, I0(0,Ho)
U 0 1 0 (5-108)

0 ,H1 ) - 1 (1 H1 )-

0 t -10 t-l1
t-l A t(u - I,Ho - E0(u t I  0,Ho 0

u ) = A -A-t t-I- 1 1t- I
Zt ( u ,0,H 1 ) - (U 1,H1)

(5-109)

1i t < 1

i~tH)k E i uNH (-110) " -- -
i H N (uH) (

UN),... , t+11 t . .

ZiN N.I HNpv -) p(dt=! U N,v N 5il
N(uN Z (vN ,IN  %" ?

or

IN ' H ) pd N (5-112)". Ni<uN,1-) =E N p dJJ =i u 'v  (5-112).'. a..

v H ..
%: . d~***

-V %

N N'r
%.A A .
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Finally

_0 t -
Z -u(u 0,H O

u~ 0 -l1 0 t -l (5-113)
It ' t 0

(b) The optimal decision rules at DM at all times are %
2

obtained by interchanging x with y and u with v in

equations (5-105) through (5-113).

(c) The decision rule at the data fusion center is given

by Theorem 5.4(d). -

5-5. Discussion ,

In this chapter, we have considered two decentralized

sequential detection problems namely: the Bayesian sequential

hypothesis testing problem for a tandem topology network, and

the decentralized sequential probability ratio test problem. 0

In both problems, we derived the decision rules at each de-

cision maker at each time stage. Under the assumption that -*

the observations are conditionally independent; the decision

rules are likelihood ratio test (LRT). Furthermore, the

threshold of each decision maker at time t depends on all of

its previous decisions. However, all threshold equations

are coupled at all times. One needs to solve these equations

simultaneously in order to obtain a solution for the thresh-

olds. The coupling between the threshold equations catuses

considerable complexity in the computation of the optimal

% 11,, %



thresholds. However, the results obtained here could be

used to obtain some simpler suboptimal solutions for these

decentralized sequential detection problems by making suit-

able simplifications. _
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CHAPTER SIX 0

SUMM1ARY AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Summary

In this Report we have considered some hypothesis

testing problems where the detection network consists of a

multitude of geographically distributed decision makers. We

investigated distributed detection problems for various net-

work topologies. First, we considered two schemes for data
0

fusion namely, centralized data fusion and distributed data

fusion. Next, the distributed detection problem with dis-

tributed data fusion was solved using the Bayesian approach

as well as the Neyman-Pearson approach. Then, the Neyman- .

Pearson detection problem and the sequential hypothesis %

testing problem for a tandem topology was solved. Finally, 4AN
0

the distributed sequential probability ratio test was in-

vestigated. In all cases, we have derived the optimal

strategies at each decision maker. The decision rules at ,-
0

each decision maker turn out to be LRT's where the thresholds % 6%

are described by a set of coupled nonlinear equations. The

simultaneous solution of these equations yields the set of %-%

thresholds. There may be several local solutions. Each must ,0

be checked to assure that a global minimum is found.

0
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6.2 Suggestions for Future Research

Optimal decisions rules have been derived for various

distributed detection problems in this Report . The 11
thresholds associated with the decision rules are obtained

through the solution zf coupled nonlinear equations. The

computation of the numerical values of the thresholds is

extremely difficult and involved. Therefore, efficient

computational algorithms for the solution of the threshold

equations should be developed.

Throughout this Report , we have assumed that the

observations are conditionally independent as is the case

in most of the published literature. Hypothesis testing

problems with dependent observations should be investigated 04 %.

due to its wide practical applications. --

Different structures (topology, communication protocols,

etc ...) of distributed detection systems should also be

studied, i.e., how should one organize the various decision

makers in a detection network in order to maximize the per-

formance of the overall system?

1 _0 ',
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